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1. INTRODUCTION

Unforced or self-excited periodic oscillations in non-linear dynamical systems are called
limit cycles. Limit cycles usually arise at a Hopf bifurcation in non-linear systems with
a varying parameter. In mechanical systems, the varying parameter is frequently a damping
coe$cient. Examples of limit cycles in mechanical systems are #utter of aircraft wings, surge
oscillations in axial #ow compressors, and wing rock in aircraft #ight dynamics.

Regular or normal limit cycles were distinguished from large-amplitude limit cycles by
Ananthkrishnan and Sudhakar [1]. Stable normal limit cycles are created at a supercritical
Hopf bifurcation with the limit cycle amplitude building up gradually from nought as the
parameter is varied from the Hopf bifurcation point. In contrast, stable large-amplitude
limit cycles are either created with a "nite amplitude or show a sudden increase in amplitude
after originating as a normal limit cycle at a Hopf bifurcation point.

Stable large-amplitude limit cycles were characterized in terms of secondary bifurcations
by Ananthkrishnan et al. [2]. The phenomena of "nite amplitude onset, and jump in
amplitude were described in terms of secondary fold bifurcations. The presence of large-
amplitude limit cycles was seen to be accompanied by hysteresis in the system response with
varying parameter. Reference [2] also constructed low order models based on a non-linear
damping mechanism that reproduced the essential dynamics associated with the primary
Hopf-secondary fold bifurcation pairs characterizing large-amplitude limit cycles. These
models were found to provide a suitable representation of the large-amplitude surge limit
cycles in axial #ow compressors. However, the models in reference [2] based on a non-
linear damping mechanism could not explain the large-amplitude wing rock limit cycles
that had been characterized in terms of the same primary Hopf-secondary fold bifurcation
pair [1]. Ananthkrishnan et al. [3], therefore, came up with another model based on an
alternate mechanism involving a pair of resonantly coupled oscillators.

The models in references [2, 3] represented large-amplitude limit cycles created at
secondary fold bifurcations following a primary Hopf bifurcation. However, there could be
mechanical systems where large-amplitude limit cycles are characterized by a di!erent
combination of bifurcations. One such problem arises in the passage through resonance of
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rolling "nned projectiles with an o!set center of mass [4]. The dynamics of these projectiles
shows the phenomenon of lock-in at resonance [5, 6]. In some instances, the locked
in projectile experiences large-amplitude yawing motion called catastrophic yaw.
Catastrophic yaw has been conjectured to be a large-amplitude limit cycling motion, but
one that is not characterized by the secondary fold bifurcation mechanism [7].

This, therefore, provides the motivation to seek a model based on an alternate bifurcation
mechanism for the creation of large-amplitude limit cycles in mechanical systems. However,
application of this model to the catastrophic yaw problem, attempted by Sharma [8], is not
within the scope of this Letter.

2. MODEL

As in references [2, 3], the supercritical van der Pol oscillator serves as a starting point for
the model construction procedure,

x(#(x2#k)xR #x"0. (1)

Equation (1) has one equilibrium point at x"0 that is stable for k'0 and unstable for
k(0. Loss of stability with varying k occurs at a Hopf bifurcation at k"0 resulting in
a family of stable limit cycles for k(0. In order to create the fold bifurcations, references
[2, 3], in essence, augmented equation (1) with additional damping terms. In the present
work, equation (1) is modi"ed with additional quadratic and cubic sti!ness terms, to give
the following augmented model:
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The signs of the coe$cients of the linear and cubic sti!ness terms are so chosen that
equation (2) shows multiple equilibrium solutions for all values of the damping coe$cient k.
It is easily seen that the equilibrium points of equation (2) occur at x"0,
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, symmetrically about x"0.

For the following analysis, we choose k
1
"!4, k

2
"0, and k

3
"1. Then, the equilibrium

at x"0 is an unstable saddle, while the other two equilibria are stable foci for k"0. The
sequence of bifurcations with decreasing linear damping parameter k is computed with the
AUTO continuation algorithm of Doedel et al. [10]. The resulting bifurcation diagram is
plotted in Figure 1, which also shows the phase portraits corresponding to the values of
k labelled a}d.

With k decreasing from zero, the right outset of the saddle connects with the right inset,
and the left outset with the left inset, at the value of k labelled b, giving rise to two
simultaneous homoclinic bifurcations, also called a gluing bifurcation. Beyond the
homoclinic bifurcation, for instance at a value of k labelled c, the saddle connection gives
way to create an unstable limit cycle about each of the stable foci, and a large-amplitude
stable limit cycle encircling all the three equilibrium points. The unstable limit cycles vanish
at simultaneous subcritical Hopf bifurcations, but the stable limit cycle persists for smaller
values of k. The limit cycles in this case are symmetric about x"0 although this may not be
apparent from Figure 1 where only peak limit cycle amplitudes have been plotted.



Figure 1. Computed bifurcation diagram for equation (2) with varying linear damping parameter k for the
non-generic case of k

2
"0. (**: stable equilibria, }} }: unstable equilibria, d*d: stable limit cycle, L*L:

unstable limit cycle, j*j: Hopf bifurcation, K*K: homoclinic bifurcation). Peak amplitudes of the limit cycle
solutions have been depicted. Phase portraits corresponding to values of k labelled a, b, c, d are shown as insets.
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The birth of the stable large-amplitude limit cycle in Figure 1 is distinct from that at fold
bifurcations in references [2, 3]. The saddle loops at the value of k labelled b are not limit
cycles as they are not periodic. The period tends to in"nity as one approaches the
homoclinic bifurcation point along either the stable or unstable limit cycle branch. In
contrast, at a fold bifurcation, one has a limit cycle with "nite period. However, the
large-amplitude limit cycles in Figure 1 are similar to those created at a fold bifurcation in
that they do show the properties of "nite amplitude onset, and hysteresis in the system
response with varying parameter. The phenomenon of simultaneous homoclinic
bifurcations in Figure 1 is a special case arising due to the equidistance of the stable foci
from the saddle point.

Case B (k
2
O0). This is the generic case where the introduction of the quadratic sti!ness

term breaks the symmetry in the location of the stable foci about x"0. For the following
analysis, we choose k

1
"!2, k

2
"1, and k

3
"1. For k"0, the equilibrium points are an

unstable saddle at x"0, and a pair of stable foci at x"1 and !2. The bifurcation
diagram for this case, with k as the parameter, computed by using the AUTO continuation
algorithm of Doedel et al. [10], is shown in Figure 2. The sequence of bifurcations with
decreasing k can be understood with reference to the phase portraits shown in Figure 3.
Figure 3(a) shows the phase portrait for k"0. With decreasing k, the "rst homoclinic
bifurcation occurs when the right outset of the saddle connects with the right inset as shown
in Figure 3(b). The homoclinic gives rise to a family of unstable limit cycles about the right
focus, shown in Figure 3(c), which terminates at a Hopf bifurcation at k"!1. This leaves
the left focus as the only stable solution (Figure 3(d)) until the right outset connects with the
left inset in another homoclinic bifurcation, as shown in Figure 3(e). Out of the resulting
saddle loop, which encircles both the foci, emerges a family of large-amplitude limit cycles,
as shown in Figure 3(f ).

With a further decrease in the value of k, the left outset connects with the left inset in yet
another homoclinic bifurcation giving rise to a family of unstable limit cycles about the left



Figure 2. Computed bifurcation diagram for equation (2) with varying linear damping parameter k for the
generic case of k

2
O0. (**: stable equilibria, } } }: unstable equilibria, d*d: stable limit cycle, L*L: unstable

limit cycle, j*j: Hopf bifurcation, K*K: homoclinic bifurcation). Peak amplitudes of the limit cycle solutions
have been depicted.

Figure 3. Phase portraits corresponding to the sequence of bifurcations with decreasing values of k in Figure 2.
See text for explanation.
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focus which end in a subcritical Hopf bifurcation at k"!4. This scenario is identical to
that in Figure 3(b}d), and is therefore not sketched separately in Figure 3. The stable
large-amplitude limit cycles persist for smaller values of k. Once again, the phenomena of
"nite amplitude onset, and the hysteresis between the stable large-amplitude limit cycles
and the stable left focus with varying parameter, can be noticed.

Computationally, the stable large-amplitude limit cycles in Figure 2 are not
a continuation of a limit cycle branch starting or ending at a Hopf bifurcation, and this
makes it di$cult to locate and track them. Like most continuation algorithms, AUTO does
not identify homoclinic bifurcations, and they can be computed only in the limit of a branch
of limit cycles as the period goes to in"nity. Thus, the computation of the bifurcation
diagram in Figure 2 is much more of a challenge than those in references [2, 3] where the
limit cycle branch originating at a Hopf bifurcation could be continued past the fold
bifurcations to track the large-amplitude limit cycles.

3. CONCLUSION

The creation of stable large-amplitude limit cycles in mechanical systems by way of
a homoclinic bifurcation mechanism has been described. This provides an alternative to the
more common secondary fold bifurcation mechanism analyzed earlier by the authors [2, 3].
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